skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wagner, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The increasing energy demand in information technologies requires novel low‐power procedures to store and process data. Magnetic materials, central to these technologies, are usually controlled through magnetic fields or spin‐polarized currents that are prone to the Joule heating effect. Magneto‐ionics is a unique energy‐efficient strategy to control magnetism that can induce large non‐volatile modulation of magnetization, coercivity and other properties through voltage‐driven ionic motion. Recent studies have shown promising magneto‐ionic effects using nitrogen ions. However, either liquid electrolytes or prior annealing procedures are necessary to induce the desired N‐ion motion. In this work, magneto‐ionic effects are voltage‐triggered at room temperature in solid state systems of CoxMn1‐xN films, without the need of thermal annealing. Upon gating, a rearrangement of nitrogen ions in the layers is observed, leading to changes in the co‐existing ferromagnetic and antiferromagnetic phases, which result in substantial increase of magnetization at room temperature and modulation of the exchange bias effect at low temperatures. A detailed correlation between the structural and magnetic evolution of the system upon voltage actuation is provided. The obtained results offer promising new avenues for the utilization of nitride compounds in energy‐efficient spintronic and other memory devices. 
    more » « less
  2. null (Ed.)
  3. Abstract Magneto-ionics, understood as voltage-driven ion transport in magnetic materials, has largely relied on controlled migration of oxygen ions. Here, we demonstrate room-temperature voltage-driven nitrogen transport ( i.e ., nitrogen magneto-ionics) by electrolyte-gating of a CoN film. Nitrogen magneto-ionics in CoN is compared to oxygen magneto-ionics in Co 3 O 4 . Both materials are nanocrystalline (face-centered cubic structure) and show reversible voltage-driven ON-OFF ferromagnetism. In contrast to oxygen, nitrogen transport occurs uniformly creating a plane-wave-like migration front, without assistance of diffusion channels. Remarkably, nitrogen magneto-ionics requires lower threshold voltages and exhibits enhanced rates and cyclability. This is due to the lower activation energy for ion diffusion and the lower electronegativity of nitrogen compared to oxygen. These results may open new avenues in applications such as brain-inspired computing or iontronics in general. 
    more » « less
  4. Abstract This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting. 
    more » « less